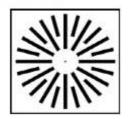


Ротационные диффузоры AXO предназначены для использования в системах вентиляции и кондиционирования.

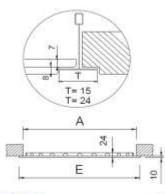
Их можно устанавливать в подвесных потолках.

Конструкция направляющих пластин и их расположение, создают вихревой поток воздуха с эффектом флотации, что обеспечивает высокую скорость выхода воздуха в окружающую среду и уменьшение стратификации.

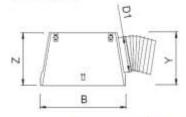

Разбитые на секторы направляющие пластины создают одинаковый поток воздуха по всему вентиляционному каналу.

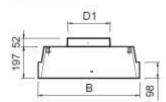
Диффузоры серии AXO подходят для систем с постоянным расходом воздуха CAV или переменным расходом воздуха VAV.


Данные диффузоры можно использовать на высоте от 2,6 до 4 метров , при перепаде температур до 12° С, для расхода воздуха от 90 до 1500 м^3 /ч.


AXO-S

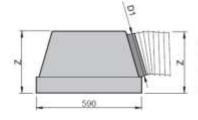
AXO-SY


AXO-S.../T/



	E	A		
300	295	280		
400	395	376		
500	495	476		
600	595	576		
610	605	591		
625	620	601		
675	670	651		
800	795	776		

BOXSTAR



	В	Z	Y	D1
300	290	250	275	123
400	390	300	325	198
500	490	300	325	198
600-D1:250	590	350	375	248
600-D1:200	590	300	325	198
610-D1:250	600	350	375	248
610-D1:200	600	300	325	198
625-D1:250	615	350	375	248
625-D1:200	615	300	325	198
675-D1:250	665	350	375	248
675-D1:200	665	300	325	198
800	790	415	440	313

BOXTHERM

	Z	D1	
600-D1: 250	350	248	
600-D1: 200	300	198	

1)

КЛАССИФИКАЦИЯ

AXO-S Квадратный диффузор с пластинами, расположенными по окружности.

AXO-SY Квадратный диффузор с круглым расположением пластин , с наклоном относительно центра.

- .../Т15/ Панель с угловыми бортиками для потолочного профиля 15 мм.
- .../Т24/ Панель с угловыми бортиками для потолочного профиля 24 мм.

МАТЕРИАЛ

Диффузор изготовлен из стали и направляющие пластины выполнены из алюминия. Все диффузоры имеют уплотнение с задней

Все диффузоры имеют уплотнение с задней стороны рамы диффузора, обеспечивающее воздухонепроницаемость по периметру рамы с потолком.

дополнительные элементы

BOXSTAR Пленум–бокс пирамидальный с боковым круглым , изготовлен из оцинкованной стали.

-/S/ Пленум-бокс с верхним круглым подсоединением
--R Пленум-бокс с регулировкой объема воздуха.
- .../AIS/ Пленум-бокс с теплозвуковой изоляцией из вспененного материала.

BOXTHERM Пирамидальный пленум-бокс термоаккустический с боковым круглым подсоединением. Изготовлен из пенополистирола темно-серого цвета, толщиной 22мм, который действует как термоакутический изолятор.

....-R Пленум-бокс с регулировкой объема воздуха.

PMXO Монтажная траверса для монтажа в подвесном потолке без пленум-бокса.

КРЕПЛЕНИЕ

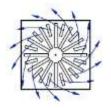
1) Соединение с траверсой или пленум-боксом с помощью центрального болта.

ОТДЕЛОЧНЫЕ ПОКРЫТИЯ

R9016S Полуматовый белый цвет R9016 (60-70% блеска)

R9010S Полуматовый белый цвет R9010 (60-70% блеска)

/AB/ Диффузор и пластины окрашены в белый цвет R9016S



AXO-S/SY

<u>Техническое описание</u> Диффузор вихревой.

ИЗОТЕРМИЧЕСКИЕ условия выхода воздуха

Технические данные указаны для стандартных пленум-боксов

Number	m3/h	75	150	200	250	300	350	400	500	600	700	800	1000	1200	1500
of slots	l/s	21	42	56	69	83	97	111	139	167	194	222	278	333	416
12	vf	2,1	4,2												
	Lw(A)	<15	25,3												
	Dpt	5,5	21,1												
	Al02	1,1	2,3												
16	vf		2,2	2,9	3,7	4,4									
	Lw(A)		<15	22,41	28,9	34,36									
	Dpt		7,1	12,5	19,3	27,6									
	Al02		1,5	2	2,5	3									
20	vf				2,4	2,9	3,4	3,8	4,8						
	Lw(A)				18,35	23,79	28,4	32,4	39						
	Dpt				8,4	11,9	16	20,6	31,5						
	Al02				2	2,4	2,8	3,3	4,1						
24	vf						2,1	2,4	3	3,6	4,2	4,8			
	Lw(A)						19,56	23,4	30	35,41	39,9	43,87			
	Dpt						6,8	8,8	13,6	19,4	26,2	34			
	Al02						2,4	2,7	3,4	4,1	4,7	5,4			
	vf								2,5	3	3,5	4	5		
32	Lw(A)								25,7	31,3	35,9	40	46,8		
	Dpt								9	12,8	17,2	22,2	33,9		
	Al02								3	3,6	4,2	4,8	6		
36	vf								2,2	2,6	3	3,5	4,3		
	Lw(A)								25,6	31,1	35,8	39,8	46,6		
	Dpt								7,1	12,8	17,2	22,2	33,9		
	Al02								2,5	3	3,5	4	5		
40	vf										2,5	2,9	3,6	4,3	
	Lw(A)										36,6	39,6	46,4	51,9	
	Dpt										10,4	13,4	20,4	28,9	
	Al02										3,1	3,5	4,4	5,2	
48	vf											2,1	2,6	3,1	3,9
	Lw(A)											26,6	34,6	41,1	49,1
	Dpt											5,8	8,9	12,6	19,3
	AI02											3,3	4,1	4,9	6,1

 Условные обозначения

 Vf (м/сек)
 скорость
скорость свободной подачи воздуха

 $Q (M^{3}/4)$ расход воздуха

Dpt (Πa) общая потеря давления Lw(A) (дБА) уровень звуковой мощности

выброс воздушного потока, с эффектом Coanda, остаточная скорость 0,2м/с AI0.2(M)

